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Note 

Semi-Implicit Particle Simulation of 
Kinetic Plasma Phenomena 

1. INTRODUCTION 

This paper  presents recent progress in improving the efficiency of particle 
simulations of kinetic p lasma phenomena when there are disparate time  scales. 
Kinetic phenomena in plasmas exhibit ranges of time  and  space scales that span 
many orders of magn itude [ 11. If the physical phenomenon  of interest possesses 
characteristic time  and  space scales that represent a  much slower variation than 
that of the most rapid variations admitted by the fundamental equations describing 
the system, then the system of equations is stiff. A large disparity in time  and  space 
scales places great stress on  the numerical methods used to simulate such a  system. 
This is a  classic problem in computational physics and  has received much attention. 
This paper  presents a  new advance in rendering particle simulation of plasmas more 
efficient by means  of a  semi-implicit integration technique. A general  class of 
physics mode ls is amenable to semi-implicit integration, and  implementation of the 
scheme is simple and  straightforward. The  technique is illustrated here with mode l 
algorithms and  numerical dispersion analyses. We  demonstrate that the desirable 
accuracy and  stability characteristics of a  class of direct implicit particle schemes 
introduced earlier [2, 31  can be  recovered with the semi-implicit algorithm. 
Furthermore, the semi-implicit method is easily adapted to electron subcycling [4] 
and  orbit-averaging [S] and  circumvents some difficulties identified in combining 
implicitness with orbit-averaging [6]. In electron subcycling, the electron equations 
of motion and  the field equation(s) are advanced with the same timestep; and  the 
ion equations of motion are advanced less often with a  bigger timestep. In an  orbit- 
averaged algorithm, the equations of motion of one  or more plasma species are 
advanced with a  small timestep; the contributions to the plasma charge and  current 
densities are time-averaged; and  the field equations are solved with a  larger 
timestep. 

The  new invention reported here is a  natural outgrowth of the developments that 
have been  made  in implicit and  other mu ltiple-timescale techniques used in plasma 
simulation [7]. O f particular importance in motivating the present work was the 
successful introductrion of the semi-implicit magnetohydrodynamic simulation 
method by Harned and  Kerner [8]. In the semi-implicit method, additional terms 
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are introduced into the finite-difference equations, usually as the difference of two 
expressions that differ only in the time level of the dependent field or fluid variable. 
The form of the additional terms is dictated by the structure of the difference 
equations and the characteristics of the normal modes. To illustrate this, consider 
the following elementary finite-difference equation describing a harmonic oscillator: 

x,+,-2x,+x,p,= --o;At2x,. (1) 

This difference equation has the driving force on the right side expressed as an 
explicit function of the displacement. With the right side replaced with the centered 
implicit expression -I& At2(x, + i + 2x, + x, ~ ,)/4, unconditional stability for 
0: At2 9 1 is achieved while maintaining second-order accuracy in time for 
&J At2 < 1. The semi-implicit form of Eq. (1) can be obtained by adding the 
following expression to the right side of (1): 

or, equivalently, 
0; At’Cxn - (xn + 1+ 2~ + x,, ~ I I/41 Pa) 

w~At2C(x,--X,+,)-(x,~,-x,)l/4. (2b) 
This example displays the essence of a semi-implicit integration scheme. To 
implement it in a particle simulation, we shall identify the correct expressions to 
subtract and add to the field equations in the simulation algorithm to render it 
semi-implicit. The choice of expressions is guided by analyzing the numerical 
dispersion of the algorithm. Finally, past experience and analysis of implicit particle 
algorithms dictate the appropriate choreography of particle-pushing and lield- 
solving steps to achieve the desired stability and accuracy characteristics [2, 31. 
This will be made explicit in the following discussion of algorithms and stability 
analyses. 

The earlier work of Cohen, Freis, and Thomas [6] addressed the closely related 
issue of merging implicit particle methods with orbit averaging. That work 
suggested that both direct implicit and implicit moments methods could be com- 
bined with orbit averaging to yield algorithms that were stable at large timestep. 
However, only the orbit-averaged, implicit moment algorithm was demonstrated in 
[6]; and Cohen [ 1 ] suggested that the resulting matrix equation for the field in an 
orbit-averaged, direct implicit algorithm might lose its sparseness. Furthermore, an 
orbit-averaged, direct implicit algorithm has never been demonstrated in a working 
code. The new work here introduces semi-implicit methods to particle simulation 
and shows how subcycling and orbit averaging are easily incorporated without 
changing the sparseness pattern of the matrix field equations. 

The rest of the paper is organized as follows. Section 2 presents a semi-implicit 
electrostatic algorithm for an unmagnetized plasma and the associated numerical 
dispersion analysis. The dispersion relation of a class of direct-implicit algorithms 
analyzed in [S] is recovered. In Section 3 a semi-implicit, orbit-averaged, elec- 
trostatic algorithm is introduced; and its dispersion relation is derived. A semi- 
implicit, orbit-averaged, electrostatic gyrokinetic [9] algorithm is presented and 
analyzed in Section 4. Conclusions are given in Section 5. 
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2. SEMI-IMPLICIT ELECTROSTATIC PARTICLE ALGORITHM 

Consider the following variation of a simple leapfrog electrostatic particle 
algorithm. The electron velocities v and positions x are advanced according to 

V II+ l/2 = vn-,,2+Atan (34 

%I+1 =x,+Atv,,+,,z, (3b) 

where a, is the particle acceleration as calculated by interpolating the electro- 
magnetic forces from the grid to the particle, and the subscripts denote the time 
levels. If we ignore the modifications due to introducing a grid, then the accelera- 
tion in an unmagnetized plasma is just a,, = -(q/m) Vb,,. A time-centered v x B 
Lorentz force can be straightforwardly included to accommodate an applied 
magnetic field. From the temporary values {Gn + , }, an electron density fi,, 1 is 
accumulated on the grid using the same interpolation scheme as for the force on the 
particle, but in the reverse direction. Poisson’s equation is then solved to determine 
the self-consistent electric potential. If we again disregard modifications to account 
for finite-differencing on a grid, a general class of semi-implicit Poisson equations 
can be cast in the form 

-V’4,+ 1 =47ce(n,-fin+,) 

+V.(0~,At2VCC~(~n-~n+1)+Cl(~n~1-~n)+ . ..I}. (4) 

where the constants { Ci} are chosen to optimize certain properties of the integra- 
tion scheme [ 10, 31. The term in the Poisson equation containing the time series 
in 4, constitutes the semi-implicit modification of the field equation. Effects due to 
interpolation between the particles and the grid, and due to finite differencing have 
been omitted throughout to simplify the presentation; but these effects could 
be included quite straightforwardly without fundamentally changing the results 
given here. 

Because of the semi-implicit modification of Poisson’s equation, the force term 
used in the velocity advance is no longer consistent with the effective electron 
charge density used in (4). To remedy this, a corrector advance of the electron 
displacements is computed: 

xn+1= xn+l+G(an+I -a,)At’+C,(a,-anp,)At2+ .... (5) 

The explicit form of the correction terms on the right side of Eq. (5) is derived by 
analytically calculating the linear increment to the charge density that they induce 
and constraining it to match the semi-implicit term in Eq. (4). 

To study the temporal stability and accuracy of this algorithm, we derive the 
linear dispersion relation describing the normal modes of the difference equations 
using standard techniques [3]. First, Eq. (3b) is used to algebraically eliminate 
Bn+ i. Equations (3a), (4), and (5) are linearized next and Fourier analyzed in time 
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and space; and the amplification factor 1= 4, + , /d, = exp( - io At) is introduced. 
The linearly perturbed electron charge density in a cold, non-drifting, uniform 
plasma can be shown to be en,ik . x(w), where x(o) is the Fourier amplitude of the 
linear displacement. These steps reduce Eqs. (3a), (4), and (5) to a linear system of 
equations for the Fourier amplitudes x(o), v(o), and i(o), whose characteristic 
equation yields the dispersion relation 

1 i Cl c, 
m~,nt~+(n-l)*+C”+X+‘+ ... =o, 

in the absence of grid corrections; ape is the plasma frequency. This recovers the 
dispersion relation derived by Cohen, Langdon, and Friedman in [3] for the class 
C direct implicit schemes. 

The influence of finite differencing and spatial interpolation to a grid on the 
direct implicit algorithms was analyzed in [ 11, 123. It is straightforward to include 
finite-differencing and grid interpolation effects in a semi-implicit algorithm in such 
a way as to mimic the same linear dispersion derived in [ll, 121. The methods for 
this are derived from the techniques used in [ 11, 123. Some aspects of the disper- 
sion of the direct implicit algorithm for both a drifting plasma and a cold, non- 
drifting, magnetized plasma were analyzed in [3]; some warm plasma effects 
were addressed analytically in [ 111 and in the direct implicit simulations of a hot, 
expanding plasma slab in [13]. Based on the analysis and arguments presented 
here and previous experience, we expect that the semi-implicit algorithm will have 
dispersion properties that are very similar to the direct implicit method in most 
respects. 

The dispersion relation in Eq. (6) describes plasma oscillations. The analysis in 
[3] demonstrated how numerical stability could be maintained for a subset of the 
C schemes with Co + l/w;, At2 > C, + $ and Ci,* = 0 (C, scheme). The C schemes 
are second-order accurate in time for w& At’ < 1, and dissipation is introduced 
when C, a, > 0. Figures 1 and 2 in [3] provide more detailed results on the stability 
and dissipation in the C, scheme. There is considerable experience in using the C, 
scheme [13]. The conclusion of this section is that the desirable dispersion proper- 
ties of the C, direct implicit algorithm can be recovered in a semi-implicit 
algorithm. 

3. SEMI-IMPLICIT, ORBIT-AVERAGED, ELECTROSTATIC ALGORITHM 

Earlier work reported in [6] demonstrated that an orbit-averaged electrostatic 
algorithm was subject to a timestep constraint to ensure numerical stability. 
Numerical stability at large timestep could be achieved in an implicit, orbit- 
averaged algorithm. This was demonstrated in [6] where orbit averaging was com- 
bined with the implicit moment method. It was unclear whether orbit averaging 
could be combined with the direct implicit method so that the matrix equation for 
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the implicit Poisson’s equation remained banded and sparse. Here we present a 
semi-implicit, orbit-averaged, electrostatic algorithm leading to a field equation that 
is sparse and banded. This algorithm is attractive for several reasons. The use of a 
large timestep in the field solution and the ion advance improves the efficiency of 
simulating slowly evolving collective phenomena. In addition, the orbit averaging of 
the electrons facilitates using both a small timestep to accurately resolve the 
electron trajectories and a reduced number of electrons to statistically sample the 
velocity distribution function. 

In an orbit-averaged algorithm, the electrons are advanced from NAT to 
(N+ 1) AT starting at {x ,,,, vN} with small timesteps At G AT: 

i n + l/2 = iJ n - l/2 +a’,At (7a) 

Xn+l =5in+in+,,2At, C’b) 

where n is the index for the small timestep advance, N is the index of the time level 
for the field solution and ion advance, and a>= -(q/m) V#, is the acceleration 
evaluated at the particle position 2,. The v x B Lorentz force could be 
straightforwardly included. The electron number density nz is accumulated from 
(gn} and time-averaged to obtain (ne)N+ ,,*. The current density J’, is 
accumulated from (+&, i, _ 1,2} and { gn, v” n + ,,2), and averaged in time from NAT 
to (N+ 1) AT to form (Je)N+1,2. Ions can be advanced in conventional leapfrog 
fashion with the field solve interleaved: 

V -V Nt l/2 - N--1,2+a&fT @a) 
X N+, =XN+VN+I,ZAT~ (8b) 

The ion number density n,, i is accumulated from {X, + , }. 
The semi-implicit Poisson equation is motivated by the results presented in [6], 

-v2($N+ I -cjN)= -4xATV~(J’)N+l,z+4ne(n~+1-nn,) 

+V.{c;j~,AT2CC,(V~N+I-V~N) 

+c,(vdN-vdN-,)+ . ..I). (9) 

where W& = 471 (n’ ) N + 1,2 e2/me. In order for the electron trajectories to be consis- 
tent with the charge density appearing in Eq. (9), an electron corrector advance 
must be undertaken from N AT to (N + 1) AT: 

V”, 112 =v,-,,2+dt[aR+2Co(aR+I-a~)+ . ..I. W) 

x,+1 = x, + v,, I/2 At, (lob) 

where the accelerations in (10a) are computed at the x, particle positions. The elec- 
tron number and current densities are not collected on the corrector pass. The semi- 
implicit Poisson equation, Eq. (9), leads to a sparse, banded matrix equation with 



NOTE 229 

the same structure as the field solution for the direct implicit method with simplified 
spatial differencing [2, 11, 121. 

The analysis of the linear dispersion relation for this semi-implicit, orbit- 
averaged, electrostatic algorithm and the demonstration of its numerical stability 
for mpe AT% 1 are similar to the dispersion analysis in Section 2. We again consider 
linear waves in a uniform, cold, non-drifting plasma. For the electron plasma wave 
branch, the ions can be assumed to be stationary. The linearized quantities ji,, , 
and in+ 1l2 can be eliminated algebraically: 

i n+l =x,+v,(n+ 1) At+a,p (n+1)nAt2 
2 ’ 

v”,+,,2=v +a (n+l)At. N N (11) 

The linearized orbit-averaged current is determined from {V, + ij2} : 

(J’) Nt l/2 = -“o+‘+--)ATE”]~ (12) 

The linearized electron corrector equations can be solved in similar fashion to 
Eq. (11) to obtain 

X,+,=X,+VN(n+l)d~+~dt2[a,+2c,(a,,,+,-a,,)+ . ..I. 

(13) 
V n+1,2=vN+(n+ l)dt[aN+2C,(aN+,-aN)+ “.I. 

If we assume AT 9 At, evaluate (x,, v, + i/2 ) at (N + 1) AT, Fourier transform in 
time, and consider C, # 0 and Ci,, = 0, we obtain 

(i-l)k.v(o)= -;AT[ZC,I+(l-2C,)]k.E(w), 
e 

(14) 

where II = exp( - iu AT). We Fourier analyze the linearized orbit-averaged current 
in Eq. (12) and substitute it into Poisson’s equation, Eq. (9), to obtain 

(A--l)k.E(w)=4~enoATk. v(w)- 5 AT 
[ (J ?I 

+ Coo;, AT’(1 - ,I)k . E(o). (15) 

A dispersion relation is then obtained by algebraically eliminating k . v(o) and 
k .E(o) from Eqs. (14) and (15): 

(1+C00;,AT2)(&1)2+o;,AT2[(2C,+1/2)(1-1)+1]=0. (16) 

In the limit of AT2 9 1, the two solutions of Eq. (16) are ;i= 1 - 1/(2C,), and 
- 1 + 0( l/o&. AT’), which are stable (llrl < 1) for Co > 4. For w$ AT2 6 1 and 
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C, > $, the two solutions of Eq. (16) are damped electron plasma oscillations, 
Re(w) = *ape, with relative damping rate proportional to (C, - a) ape AT and 
frequency shift proportional to 0% AT2. 

4. ORBIT-AVERAGED, SEMI-IMPLICIT GYROKINETIC ALGORITHM 

Gyrokinetic particle simulation [9] has proven itself to be an important tool in 
studying drift-wave instabilities and the concomitant turbulent transport. 
Gyrokinetics is a systematic scheme for reducing the Vlasov-Maxwell or Vlasov- 
Poisson equations to a low-frequency lim it that is valid for frequencies much lower 
than the cyclotron frequency and for waves with k,, <k, (k,, is the wavenumber 
component parallel to the applied magnetic field and k, is the perpendicular com- 
ponent), but with k,p; d O(l), where pi is the ion Larmor radius of a thermal ion. 
When conventional particle simulation techniques are used to simulate low- 
frequency waves with k, pi = 0( 1 ), the ion cyclotron time scale must be resolved, 
which results in the use of timesteps that can be several orders of magnitude smaller 
than the periods of the drift waves that are thought to be responsible for anomalous 
transport in magnetic fusion devices. Gyrokinetic simulation does not have to 
resolve the ion cyclotron time scale, and a much larger timestep can be used than 
in a conventional simulation. However, a significant separation in electron and ion 
time scales persists in electrostatic gyrokinetic particle simulation with kinetic elec- 
trons; and this circumstance provides an opportunity for the application of orbit 
averaging and semi-implicit integration to further improve the efficiency of drift- 
wave simulation. 

In a conventional gyrokinetic algorithm with kinetic electrons and ions, the 
hierarchy of time scales is as follows. The highest frequency normal mode has a fre- 
quency IX,,= (mi/mE)1’2 (k,,/k,)Qi in the lim it o$/sZ? B 1, where Qi=eB,/mic is 
the ion cyclotron frequency. The timestep At must satisfy oh At < 0( 1) to ensure 
numerical stability. In order to accurately track the electron trajectories, one must 
also guarantee k,, u, At < 1, where k,, u, = (TJT,)“’ k, PIah is the parallel transit 
frequency (which has been related algebraically to oh), u, is the electron thermal 
speed, and pi is the ion Larmor radius for a thermal ion. For T,/T, = 0( 1) 
and k,pi=O(l), k,,o, and ah are comparable. The ion diamagnetic drift 
frequency wi, = k,p,(p,/L,)SZ, and the ion parallel transit frequency k,,ui = 
(m,/mi)‘/2 (TJT,)” k,, u, represent much slower temporal variations. These condi- 
tions invite the use of a method like implicit orbit averaging that will take advan- 
tage of the disparity in time scales between the relatively fast electron motion 
parallel to the magnetic field lines and the slower ion motion and drift waves. A 
smaller timestep can be assigned to the electron advance, and a bigger timestep can 
be used for the ion advance and the field solution. Inspired by the earlier success 
with orbit averaging [S], we hope that orbit averaging will reduce the statistical 
requirements on the electrons in the gyrokinetic model. Finally, the implicitness will 
ensure numerical stability. 



NOTE 231 

A semi-implicit, orbit-averaged, electrostatic gyrokinetic algorithm can be con- 
structed following the example presented in Section 3. The algorithm consists of 
equations that are consistently ordered through the lowest significant order in the 
gyrokinetic expansion parameter E, where k,,/k,, k,p,ed/T,, w/Q,, pi/L, = O(E) 
and k, pi Q  0( 1). These equations lead to a conserved, energy-like quantity that is 
equal to the energy invariant derived by Dubin and co-workers [14] through 
second order in E. The electrons are advanced in a predictor step from NAT to 
(N+ 1) AT using the equations 

i 
E,x6 

ln=C- 
BO 

(17a) 

(17b) 

r? IIf1 = % , + i,, + ,,2 At, (17c) 

where n is the index for the small timestep advance, 6 = B,/B,, N is the index for 
the field solution and ion advance timestep, EN= -Vd,, the electric field is 
evaluated at the electron guiding center position f, (the electron Larmor radius is 
negligible), and the starting point is (x,, vN}. The electron number and current 
densities, n: and JE, are calculated at each timestep At from {%,, i,- ,,2} and 
{ 5i7,, i ,,+r12}, and then time-averaged to form (nC),+,,, and (Je)N+,,2. 

The ion gyrocenters are next advanced in a predictor step using the equations 

v - ~,,A-1 IIN+ - 

0 (EN), x  6 
IN=C 

BO 

(18a) 

(18b) 

x N+I =xN-, +2AT(v,,,&+v.,), (18~) 

where ( )e denotes the gyro-averaged quantity. The gyro-averaged ion number 
density i& + r is collected from the ion positions displaced by their Larmor radius 
from {xNfl}. A p re ic or value of the electric potential $,+ , is determined by the d t 
solution of a semi-implicit, gyrokinetic Poisson equation 

> 
($N+1-$N)=4ze(~~+,-fi~)-4~ATV.(JP)N+I,Z 

+C,V,,[o~,AT2V,,(~~+, -dN,l, (19) 

where W&=4~(e~/rn~)(n“)~+,,~, CG~,= 4wz,e2/mj, g=F’[l -I,exp(-b)] in 
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k-space, and b = k: &. The ion gyro-centers are then advanced in a corrector step 
using the equations 

V ,,N+I= V,,,+AT (EN+~N+')odi 

6 
Vl,v+,,2=c <EN+EN+')H~B 

0 

(2Oa) 

Wb) 

X zV+I=~N+~~ v~N+l,2+(v,,N+,+v,,N)~ . 1 WC) 

The corrected gyro-averaged ion density &+, is formed from { XN+, } and used in 
the place of Zi,+ r in Eq. (19) to determine #N+ r. 

The computational step from NAT to (N + 1) AT is completed by returning to 
the electron integration. A corrector pass is calculated starting again at {xN, vN} to 
guarantee consistency with the time derivative of the total electron charge density 
on the right side of Eq. (19). The electron corrector advance uses the equations 

dt[E, + Z?c,(E,+, -EN)] .6 @la) 

6 
Vln + 1/2 = cCEN + ~CO@N + I - EN)1 X B 

0 
@lb) 

Xn+I =‘~+~,+1,2Af, WC) 

where the electric fields are evaluated at x,. No electron moments need to be 
computed on the corrector pass through the electrons. 

The linear temporal stability analysis for this algorithm is quite analogous to 
the calculation in Section 3. To simplify the derivation, we consider again the limit 
of linear waves in a uniform, cold, non-drifting plasma and omit all spatial 
differencing effects. In this limit, the E x B drift velocities do not lead to any charge 
separation; and the parallel electron response dominates the ion response. The ion 
polarization term in Poisson’s equation dominates the left side of Eq. (19), and the 
reduced Poisson’s equation becomes 

-$;(bN,, -cjN)z -kcdTv.(J’),+,,, 

I 

+ COO;, AT2 vf,(4N+ I - dN). (22) 

The reduced system of equations, Eqs. (17), (21), and (22) is then identical to 
the analogous reduction of ‘Eqs. (7t( 10) in Section 3 for the electron plasma-wave 
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branch with the replacement of e&. AT2 with (kf,/k:)(~&/o~~) Qf AT2 = o.12 AT2. 
Thus, the resulting dispersion relation for the oh oscillation is 

(1+C,w;AT2)(Iu-l)*+~;:AT~[(2C~+;)(~-1)+1]=0. (23) 

For C, > f, there are stable solutions i = 1 - 1/(2C,) and - 1 + 0(1/w; AT*) for 
wi AT2 S 1 and damped oscillations with Re(w) z fo, for wi AT2 @  1. 

5. CONCLUSION 

In this paper we have presented the formulation of a new class of semi-implicit 
algorithms for particle simulation of plasmas. The structure of semi-implicit particle 
algorithms is relatively simple and is guided by the results of linear numerical 
dispersion theory for the temporal finite-difference equations. We have shown 
explicitly that the linear dispersion relation of the direct implicit particle method 
can be recovered from that of the semi-implicit particle method. Moreover, we have 
merged semi-implicit integration and orbit averaging to take advantage of disparate 
time scales and to improve further the computational efficiency of the simulation 
methods. This has been illustrated in two examples, a simple electrostatic model 
and an electrostatic gyrokinetic model. Furthermore, we have demonstrated in 
linear dispersion analyses that the highest-frequency, electron normal modes are 
rendered stable at large timestep in all three of the semi-implicit algorithms 
presented here. We will report simulation experience with these new methods in a 
future publication. 
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Note added in proof: Since this paper was submitted and revised, implementation of the semi-implicit, 
orbit-averaged, electrostatic gyrokinetic algorithm has been undertaken. For applications in which 
quasi-neutrality is important and a high degree of cancellation should occur between the electron and 
ion charge densities, the time difference of the ion density on the right sides of Eqs. (9) and (19) should 
be replaced by -4nATV. JL+ 1,2 in Eq. (9) and the corresponding gyroaveraged form in Eq. (19) so that 
the ion and electron source terms in Poisson’s equation are treated on a more equal footing with respect 
to finite-differencing elfects. These changes have no influence on the numerical dispersion relations that 
are presented in this paper, which remain valid for rn, <m,. 
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